The pair of straight lines is 3x2−11xy+10y2−7x+13y+k=0
then on compairing with ax2+2hxy+by2+2gx+2fy+c=0 ⇒<br/><br/>{<br/><br/>a=3,h=−211,b=10<br/><br/>g=−27,f=213,c=k<br/><br/>
Then, the point of intersection of the lines is [ab−h2hf−bg,ab−h2gh−af] =[30−41214−143+270,30−4121477−239] =[120−121−3,120−12177−78] =(−1−3,−1−1)=(3,1)