Given that, 3sin2θ+2sin2ϕ=1 ⇒3sin2θ=cos2ϕ ...(i)
and 3sinθcosθ=sin2ϕ ...(ii)
On squaring and adding Eqs. (i) and (ii), we get 9sin2θ(sin2θ+cos2θ)=1 ⇒sinθ=31 and cosθ=322 ∴cos2ϕ=3×91=31 and sin2ϕ=322
Now, cos(θ+2ϕ)=cosθcos2ϕ−sinθsin2ϕ =322⋅31−31⋅322=0
and θ+2ϕ<23π ∴θ+2ϕ=2π