Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 3n is a factor of the determinant |1 &1&1 nC1&n+3C1&n+6C1 nC2&n+3C2&n+6C2|, then the maximum value of n is
Q. If
3
n
is a factor of the determinant
∣
∣
1
n
C
1
n
C
2
1
n
+
3
C
1
n
+
3
C
2
1
n
+
6
C
1
n
+
6
C
2
∣
∣
, then the maximum value of
n
is
2590
167
COMEDK
COMEDK 2006
Determinants
Report Error
A
7
11%
B
5
21%
C
3
53%
D
1
16%
Solution:
Δ
=
∣
∣
1
n
C
1
n
C
2
1
n
+
3
C
1
n
+
3
C
2
1
n
+
6
C
1
n
+
6
C
2
∣
∣
=
2
1
∣
∣
1
n
n
(
n
−
1
)
1
(
n
+
3
)
(
n
+
3
)
(
n
+
2
)
1
(
n
+
6
)
(
n
+
6
)
(
n
+
5
)
∣
∣
Applying
C
2
→
C
2
−
C
1
and
C
3
→
C
3
−
C
1
, we get
=
2
1
∣
∣
1
n
n
2
−
n
0
3
6
n
+
6
0
6
12
n
+
30
∣
∣
=
27
=
3
3
∴
n
=
3