Given equation of circle 2x2+2y2+4x+5y+1=0 ⇒x2+y2+2x+5/2y+1/2=0...(i) 3x2+3y2+6x−7y+3k=0 ⇒x2+y2+2x+7/3+k=0...(ii)
Centre and radius of first circle and second circle R1→(−1,−5/4), R1→1+1625−1/2=1616+25−8=1633 C2→(−1,7/6), R2→1+3649−k=3685−36k
Now, condition for orthogonality of two circles (C1C2)2=R12+R22 (−1+1)2+(7/6+5/4)2 =1633+3685−36k 0+(1229)2=1633+3685−36k 144841=1633+3685−36k 841=297+340−144k 144k=637−841=−204 k=−1217