Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 2x2 + 2y2 + 4x + 5y +1 = 0 and 3x2 + 3y2 + 6x - 7y + 3k = 0 are orthogonal, then value of k is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $2x^2 + 2y^2 + 4x + 5y +1 = 0$ and $3x^2 + 3y^2 + 6x - 7y + 3k = 0$ are orthogonal, then value of $k$ is
KCET
KCET 2011
Conic Sections
A
$\frac {17}{12}$
18%
B
$\frac {12}{17}$
37%
C
$\frac {-12}{17}$
26%
D
$\frac {-17}{12}$
20%
Solution:
Given equation of circle
$2 x^{2}+2 y^{2}+4 x+5 y+1=0$
$\Rightarrow x^{2}+y^{2}+2 x+5 / 2 y+1 / 2=0$...(i)
$3 x^{2}+3 y^{2}+6 x-7 y+3 k=0$
$\Rightarrow x^{2}+y^{2}+2 x+7 / 3+k=0$...(ii)
Centre and radius of first circle and second circle
$R_{1} \rightarrow(-1,-5 / 4),$
$R_{1} \rightarrow \sqrt{1+\frac{25}{16}-1 / 2}=\frac{\sqrt{16+25-8}}{16}=\sqrt{\frac{33}{16}}$
$C_{2} \rightarrow(-1,7 / 6),$
$R_{2} \rightarrow \sqrt{1+\frac{49}{36}-k}=\sqrt{\frac{85-36 k}{36}}$
Now, condition for orthogonality of two circles
$\left(C_{1} C_{2}\right)^{2} =R_{1}^{2}+R_{2}^{2}$
$(-1+1)^{2}+(7 / 6+5 / 4)^{2}$
$=\frac{33}{16}+\frac{85-36 k}{36}$
$0+\left(\frac{29}{12}\right)^{2} =\frac{33}{16}+\frac{85-36 k}{36}$
$\frac{841}{144} =\frac{33}{16}+\frac{85-36 k}{36}$
$841 =297+340-144 k$
$144 k =637-841=-204$
$k =-\frac{17}{12}$