(1+x)n=nC0+nC1x+nC2x2+...+nCnxn
Diff. w.r.t. x ⇒n(1+x)n−1=nC1+nC2(2x)+.....+nCnn(x)n−1
Multiply by x both side ⇒nx[(1+x)n−1=nC1x+nC2(2x2)+.....+nCn(nxn)
Diff w.r.t. x ⇒n[(1+x)n−1+(n−1])x(1+x)n−2 nC1+nC222x+.....nCn(n2)xn−1
Put x=1 and n=20 ⇒20C1+2220C2+3220C3+.....(20)220C20
= 20 ×218[2+19]=420(218)A(2β)