Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 2 tan 2 x-5 sec x-1=0 has 7 different roots in [0, (n π/2)], n ∈ N, then greatest value of n is
Q. If
2
tan
2
x
−
5
sec
x
−
1
=
0
has 7 different roots in
[
0
,
2
nπ
]
,
n
∈
N
, then greatest value of
n
is
430
154
Trigonometric Functions
Report Error
A
8
B
10
C
13
D
15
Solution:
2
tan
2
x
−
5
sec
x
−
1
=
0
⇒
2
(
sec
2
x
−
1
)
−
5
sec
x
−
1
=
0
⇒
2
sec
2
x
−
5
sec
x
−
3
=
0
⇒
sec
x
=
2
6
,
2
−
1
=
3
,
2
−
1
⇒
sec
x
=
3
(
sec
x
=
2
−
1
)
⇒
cos
x
=
3
1
⇒
7
solutions in
[
0
,
2
15
π
]
∴
n
=
15