Q.
If 2,h1,h2,.....,h20,6 are in harmonic progression and 2,a1,a2,....,a20,6 are in arithmetic progression, then the value of a3h18 is equal to
2135
233
NTA AbhyasNTA Abhyas 2020Sequences and Series
Report Error
Solution:
21,h11,h21,…,h201,61 are in A.P. ⇒61=21+21d⇒2161−21=d ⇒d=−631 ⇒h181=21+18d=21+182(−6371)=21−72 h181=143⇒h18=3144
Also, 2,a1,a2,…,a20,6 are in A.P.⇒6=2+21D⇒D=214 ⇒a3=2+3D=2+3×2474=718 ⇒a3h18=y186×3142=12