Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (16)15 +2⋅17(16)14 +3(17)2 (16)13 + ....+16(17)15 =m (16)15 then value of √m +33 equals
Q. If
(
16
)
15
+
2
⋅
17
(
16
)
14
+
3
(
17
)
2
(
16
)
13
+
....
+
16
(
17
)
15
=
m
(
16
)
15
then value of
m
+
33
equals
1255
192
Sequences and Series
Report Error
A
15
B
16
C
17
D
18
Solution:
∵
m
(
16
)
15
=
(
16
)
15
+
2
⋅
17
(
16
)
14
+
3
(
17
)
2
(
16
)
13
+
....
+
1
6
1
(
17
)
15
∴
m
=
1
+
(
16
)
15
2
⋅
17
(
16
)
14
+
3
⋅
(
16
)
15
(
17
)
2
(
16
)
13
+
...
+
(
16
)
15
16
(
17
)
15
or
m
=
1
+
2
(
16
17
)
+
3
(
16
17
)
2
+
...
+
16
(
16
17
)
15
or
m
=
1
+
2
x
+
3
x
2
+
...
+
16
x
15
(where
x
=
16
17
)
=
d
x
d
(
x
1
+
x
2
+
....
+
x
16
)
=
d
x
d
[
x
−
1
x
(
x
16
−
1
)
]
=
(
x
−
1
)
2
(
x
−
1
)
(
17
x
16
−
1
)
−
x
(
x
16
−
1
)
=
(
x
−
1
)
2
16
x
17
−
17
x
16
+
1
⇒
m
=
(
x
−
1
)
2
1
(
∵
16
x
17
=
17
x
16
where
x
=
16
17
)
⇒
m
=
256
∴
m
+
33
=
289
⇒
m
+
33
=
17