Q.
If 1399−1993 is divided by 162, then the remainder is
3985
213
NTA AbhyasNTA Abhyas 2020Binomial Theorem
Report Error
Solution:
1399−1993= odd number − odd number = even number ⇒ It is divisible by 2 .
Also, 1399=(1+12)99=1+99C1⋅12+99C2⋅122+99C3⋅123+99C4 ⋅124+… =1+99×12+299×98⋅122+3×23399×4998×97×123+81I1 =1+99×12+99×49⋅122+3×11×49×97×123+81I1 =1+99×12+81{11×49×16+11×49×97×64+I1} 1399=1+99×12+81I2 1993=(1+18)93=1+93C1⋅18+93C2⋅182+… =1+93×18+81I3 ⇒1399−1993=99×12−93×18+81(I2−I3) =27{11×4−31×2}+81I4 =27(44−62)+81I4=27×(−18)+81I4 =81{−6+I4}=81I5
Hence, it is also divisible by 81. So, it is divisible by 162⇒ Remainder =0.