Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (1 + x)n = Co +. C1x + C2x2 + ... + Cnxn, then the sum of the series Co + 3C1 + 5C2 + ..... + (2n + 1) Cn will be
Q. If
(
1
+
x
)
n
=
C
o
+
.
C
1
x
+
C
2
x
2
+
...
+
C
n
x
n
,
then the sum of the series
C
o
+
3
C
1
+
5
C
2
+
.....
+
(
2
n
+
1
)
C
n
will be
1755
171
Binomial Theorem
Report Error
A
n
.
2
n
14%
B
(
n
+
1
)
2
n
43%
C
n
.
2
n
+
1
29%
D
0
14%
Solution:
C
0
+
3
C
1
+
5
C
2
+
.....
+
(
2
n
+
1
)
C
n
=
(
C
0
+
C
1
+
.....
+
C
n
)
+
2
C
1
+
4
C
2
+
....
+
2
n
C
n
=
2
n
+
2
(
C
1
+
2
C
2
+
.....
+
n
.
C
n
)
=
2
n
+
2
(
C
1
+
2
C
2
+
.....
+
n
.
C
n
)
=
2
n
+
2
(
n
+
2
⋅
2
!
n
(
n
−
1
)
+
3
3
!
n
(
n
−
1
)
(
n
−
2
)
+
...
+
n
⋅
1
)
=
2
n
+
2
(
n
+
n
(
n
−
1
)
+
2
!
n
(
n
−
1
)
(
n
−
2
)
+
...
+
n
)
=
2
n
+
2
n
(
1
+
(
n
−
1
)
+
2
!
(
n
−
1
)
(
n
−
2
)
+
...
+
1
)
=
2
n
+
2
n
.
(
n
−
1
c
0
+
n
−
1
c
1
+
n
−
1
c
2
....
+
n
−
1
c
n
−
1
)
=
2
n
+
2
n
.
2
n
−
1
=
2
n
+
n
.
2
n
=
2
n
(
n
+
1
)
.