Q.
If (1+x)n=C0+C1x+C2x2+....+Cnxn and r=0∑50(r+1)Cr2=(n!)2m! , then the value of (m+n) is equal to (where Cr represents _nCr )
3415
193
NTA AbhyasNTA Abhyas 2020Binomial Theorem
Report Error
Solution:
(1+x)50=C0+C1x+C2x2+.....+C50x50=r=0∑50Crxr ∫0x(1+x)50dx=r=0∑50∫0xCrxrdx 51(1+x)51−1=r=0∑50r+1Crxr+1
and (x+1)50=r=0∑50Crx50−r
Multiplying these two equations, we get, (51(1+x)51−1)(x+1)50=(r=0∑50r+1Crxr+1)(r=0∑50Crx50−r) 51(1+x)101−(1+x)50=(1C0x+2C1x2+3C2x3+....+51C50x51)(C0x50+C1x49+C2x48+....+C50)
Now, comparing the coefficient of x51, we get, 511(101C51−0)=1C02+2C12+3C22+...+51C502=r=0∑50r+1Cr2 ⇒r=0∑50r+1Cr2=511×51!50!101!=(51!)2101!=(n!)2m! ⇒m+n=101+51=152