Q. If $\left(1 + x\right)^{n}=C_{0}+C_{1}x+C_{2}x^{2}+....+C_{n}x^{n}$ and $\displaystyle \sum _{r = 0}^{50} \frac{C_{r}^{2}}{\left(r + 1\right)}=\frac{m !}{\left(n !\right)^{2}}$ , then the value of $\left(m + n\right)$ is equal to (where $C_{r}$ represents $\_{}^{n}C_{r}^{}$ )
NTA AbhyasNTA Abhyas 2020Binomial Theorem
Solution: