1+x4+x5=a0+a1(1+x)+a2(1+x)2+ a3(1+x)3+a4(1+x)4+a5(1+x)5 =a0+a1(1+x)+a2(1+2x+x2)+a3(1+3x +3x2+x3)+a4(1+4x+6x2+4x3+x4)+a5(1 +5x+10x2+10x3+5x4+x5)
So, Coeff. of xi in LHS= Coeff. of xi on RHS i=5⇒1=a5…(i) i=4⇒1=a4+5a5=a4+5 ⇒a4=−4…(ii) i=3⇒0=a3+4a4+10a5 ⇒a3−16+10=0 ⇒a3=6… (iii) i=2⇒0=a2+3a3+6a4+10a5 ⇒a2+18−24+10=0 ⇒a2=−4
Put x=−1 1=a0
Now differentiate w.r.t. x. 4x3+5x4=a1+2a2(1+x)+3a3(1+x)2+….
Put x=−1 ⇒1=a1
Again differentiate w.r.t. x 12x2+20x3=2xa2+6a3(1+x)
Put x=−1 12−20=2a2 ⇒a2=−4