Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (1+x2) (dy/dx)+y=tan-1x, y(0)1, then y((π/4))=
Q. If
(
1
+
x
2
)
d
x
d
y
+
y
=
t
a
n
−
1
x
,
y
(
0
)
1
, then
y
(
4
π
)
=
2563
218
Differential Equations
Report Error
A
e
1
B
e
C
2
e
D
e
2
Solution:
d
x
d
y
+
1
+
x
2
y
=
1
+
x
2
t
a
n
−
1
x
It is linear differential equation with
I
.
F
.
=
exp
∫
1
+
x
2
d
x
=
e
t
a
n
−
1
x
∴
Solution is
y
e
t
a
n
−
1
x
=
∫
e
t
a
n
−
1
x
⋅
1
+
x
2
t
a
n
−
1
x
d
x
y
e
t
a
n
−
1
x
=
(
t
a
n
−
1
x
−
1
)
e
t
a
n
−
1
x
+
c
⇒
y
=
t
a
n
−
1
x
−
1
+
c
e
−
t
a
n
−
1
x
x
=
0
,
y
=
1
⇒
c
=
2
⇒
y
(
x
)
=
t
a
n
−
1
x
−
1
+
2
e
−
t
a
n
−
1
x
∴
y
(
4
π
)
=
e
2
.