Put x=sinθ,y=sinθ, we get 1−sin2θ+1−sin2ϕ=sinθ−sinϕ ⇒cosθ+cosϕ=sinθ−sinϕ ⇒2cos(2θ+ϕ)cos(2θ−ϕ)=2cos(2θ+ϕ)sin(2θ−ϕ) ⇒tan(2θ−ϕ)=1⇒2θ−ϕ=tan−1(1)=4π ⇒θ−ϕ=2π ⇒sin−1x−sin−1y=2π ...(i)
Differentiating (i) w.r.t. 'x', we get 1−x21−1−y21dxdy=0⇒dxdy=1−x21−y2