We have,(1+x)15=C0+C1x+C2x2+…+C15x15 ⇒x(1+x)15=xC0+C1+C2x+C3x2+…+C15x14
Differentiating both sides w.r.t. x, we get x2x⋅15(1+x)14−1⋅(1+x)15 =−x2C0+C2+2C3x+3C4x2+…+14C15x13
Putting x=1 on both sides, we get 15⋅214−215=−C0+C2+2C3+3C4+…+14C15 ⇒214(15−2)+1=C2+2C3+3C4+…+14C15 ∴ The given series =214⋅13+1=219923.