Let d be the common difference of the A.P.
Then logyx=1+d ⇒x=y1+d logzy=1+2d ⇒y=z1+2d
and −15logxz=1+3d ⇒z=x−15(1+3d) ∴x=y1+d=z(1+2d)(1+d) =x−(1+2d)(1+d)15(1+3d) ∴(1+d)(1+2d)(1+3d)=−15 ⇒6d3+11d2+6d+16=0 ⇒(d+2)(6d2−d+8)=0 ⇒d=−2
[ ∵6d2−d+8=0 does not give a real root] ∴x=y21=y−1 =y=z1−4=z−3 z=x31 ∴x=z3
Thus x=y−1=z3