Q.
If 1−logx2+logx29−logx364<0, then range of x is (a,b). Find the minimum value of (a+9b)
193
95
Complex Numbers and Quadratic Equations
Report Error
Answer: 25
Solution:
Clearly x>0,x=1 ∴1−logx2+logx3−2logx2<0 or 1−3logx2+logx3<0 or 1−(logx8−logx3)<0 1−logx(38)<0
If x>1,logx(38)>1. So, 38>x⇒x<38.
Hence 1<x<38
Again if 0<x<1, then logx(38)>1⇒38<x⇒x>38 (Rejected).
So, x∈(1,38)≡(a,b). ∴a=1 and b=38
Hence (a+9b)=1+24=25