Since 1,log331−x+2,log3(4⋅3x−1) are in A.P. ∴2log331−x+2=1+log3(4.3x−1) log3(31−x+2)=log33+log3(4.3x−1) ⇒31−x+2=3(4.3x−1) ⇒3.3−x+2=12.3x−3
Put 3x=y ∴y3+2=12y−2 ⇒12y2−4y−3=0 ⇒(4y−3)(3y+1)=0 ⇒y=43,−31
But y=3x ∴3x=43or−31
But 3x cannot be −ve ∴3x=43 ⇒xlog33=log3(43) =log33−log34=1−log34 ⇒x=1−log34