Given complex equation is 1+i=(x+iy)(u+iv) or 1+i=(xu+yv)+i(xv+yu)
Compare real and imaginary parts, we get xu−yv=1 ...(i) xv−yu=1 ...(ii)
Multiply (i) by u and (ii) by v and then add, we get x(u2+v2)=u+v ⇒x=u2+v2u+v
from (i), y=vxu−1=u2+v2u−v
(substituting the value of x)
Now , tan−1(y/x)+cot−1(u/v) =tan−1(u+vu−v)+cot−1(u/v) =tan−1(1+uv1−vu)+cot−1(u/v)= tan−1=tan−1(1)−tan−1(uv)+tan−1(uv) =nπ+π4,n∈I