Q.
If (1+i)(1+2i)(1+3i).....(1+ni)=x+iy, then 2⋅5⋅10(1+n2)=.......
2124
211
Complex Numbers and Quadratic Equations
Report Error
Solution:
Since (1+i)(1+2i)(1+3i)......(1+ni) =x+iy…(1) ∴(1−i)(1−2i)(1−3i)....(1−ni) =x−iy…(2)
Multilying (1) and (2) we get, (1−i2)(1−4i2)(1−9i2).....(1−n2i2) =x2−i2y2 ⇒(1+1)(1+4)(1+9)....(1+n2)=x2+y2 ⇒2⋅5⋅10.....+(1+n2)=x2+y2