Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (1+i)(1+2i)(1+3i)....(1+ni)=a+ib, then 2× 5× 10× .....× (1+n2) is equal to:
Q. If
(
1
+
i
)
(
1
+
2
i
)
(
1
+
3
i
)
....
(
1
+
ni
)
=
a
+
ib
,
then
2
×
5
×
10
×
.....
×
(
1
+
n
2
)
is equal to:
2393
223
KEAM
KEAM 2002
Report Error
A
a
2
+
b
2
B
a
2
+
b
2
C
a
2
−
b
2
D
a
2
−
b
2
E
a
+
b
Solution:
∵
(
1
+
i
)
(
1
+
2
i
)
(
1
+
3
i
)
....
(
1
+
n
i
)
=
a
+
ib
...(i)
⇒
(
1
−
i
)
(
1
−
2
i
)
(
1
−
3
i
)
....
(
1
−
ni
)
=
a
−
ib
...(ii)
∴
From Eqs. (i) and (ii), we get
(
1
−
i
2
)
(
1
−
4
i
2
)
(
1
−
9
i
2
)
....
(
1
−
n
2
i
2
)
=
a
2
+
b
2
⇒
(
1
+
1
)
(
1
+
4
)
(
1
+
9
)
....
(
1
+
n
2
)
=
a
2
+
b
2
⇒
2.5.10......
(
1
+
n
2
)
=
a
2
+
b
2