Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If |1+ax&1+bx&1+cx 1+a1x&1+b1x&1+c1 x 1+a2x&1+b2x&1+c2x|=A0+A1x+A2x2+A3x3, then A0 is equal to
Q. If
∣
∣
1
+
a
x
1
+
a
1
x
1
+
a
2
x
1
+
b
x
1
+
b
1
x
1
+
b
2
x
1
+
c
x
1
+
c
1
x
1
+
c
2
x
∣
∣
=
A
0
+
A
1
x
+
A
2
x
2
+
A
3
x
3
,
then
A
0
is equal to
1888
183
Determinants
Report Error
A
a b c
18%
B
1
24%
C
0
47%
D
None of these
12%
Solution:
On putting x = 0 both sides we get
∣
∣
1
1
1
1
1
1
1
1
1
∣
∣
=
A
0
⇒
A
0
=
0