Q.
If 1,α,α2,........,αn−1 are the nth roots of unity, then i=1∑n−12−ai1 is equal to
5173
207
Complex Numbers and Quadratic Equations
Report Error
Solution:
Since 1,α,α2,...αn−1 are the nth roots of unity ∴xn−1=(x−1)(x−α)(x−α)2……(x−αn−1) ∴log(xn−1)=log(x−1)+log(x−α) +log(x−α)2+.....+log(x−αn−1)
Diff. both sides w.r.t. ‘x’, we get xn−1nxn−1=x−11+x+α1 +x−α21+...+x−αn−11
Putting x=2, we get 2n−1n2n−1=11+2−α1+2−α21+...+2−αn−11 ∴2n−1n.2n−1−1 =i=1∑n=12−α1.
Hence i=1∑n=12−αi1 =2n−1n.2n−1−2n+1 =2n+1(n−2)2n−1+1