Q.
If a+ω1+b+ω1+c+ω1+d+ω1=ω2 where a, b, c are real and ω is a non-real cube root of unity, then
1990
207
Complex Numbers and Quadratic Equations
Report Error
Solution:
a+ω1+b+ω1c+ω1d+ω1=ω2 ⇒ω is the root of the equation a+x1+b+x1+c+x1+d+x1=x2 ∴2x4+(Σa)x2+0.x2−(Σabc)x−2abcd=0
Let α,β,γ be the other roots, then ω+α+β+γ=−2Σa…(1) Σαβ=0
i.e., αβ+αω+βω+γω+βγ+γα=0…(2) Σαβγ=2Σabc…(3) αβγω=−abcd…(4) ∴α,β+ω.(α+β+γ)+βγ+γα=0
[By 2]
Since complex roots are always in conjugate form γ=ωˉ=ω2(ωˉ=ω2∴1+ω+ω2=0) αβ+ω(α+β)+ω.ω2+ω2(α+β)0 ⇒αβ+(ω+ω2)(α+β)+ω3=0 ⇒αβ+(−1)(α+β)+1=0 ⇒αβ−α−β+1=0 ⇒α(β−1)−(β−1)=0 ⇒(α−1)(β−1)=0 ∴ either α=1 or β=1
Hence one root is unity. ∴a+11+b+11+c+11+d+11=2