Q.
If 1,a1,a2,…,an−1 are the nth roots of unity, then (1−a1)(1−a2)(1−a3)…(1−an−1)=
3345
228
Complex Numbers and Quadratic Equations
Report Error
Solution:
Let n1=x;∴xn=1; ∴xn−1=0 ∴xn−1=(x−1)(x−a1)(x−a2)…(x−an−1) ∴(x−a1)(x−a2)(x−a3)…(x−an−1) =x−1xn−1=1−x1−xn =1+x+x2+…,+xn−1.
Putting x=1, we get (1−a1)(1−a2)(1−a3)…(1−an−1)=n