1−103isinθ1−10icosθ×1+103isinθ1+103isinθ =1+300sin2θ1+103isinθ−10icosθ+1003sinθcosθ =1+300sin2θ1+1003sinθcosθ+i1+300sin2θ103sinθ−10cosθ
purely real so imaginary part =0 ⇒1+300sin2θ103sinθ−10cosθ=0 ⇒1+300sin2θ=0
So,103sinθ−10cosθ=0 ⇒tanθ=10310 ⇒tanθ=31=tan(6π) ⇒θ=6π