Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 0< x< π, then ( sin 8 x+7 sin 6 x+18 sin 4 x+12 sin 2 x/ sin 7 x+6 sin 5 x+12 sin 3 x) equal to
Q. If
0
<
x
<
π
, then
s
i
n
7
x
+
6
s
i
n
5
x
+
12
s
i
n
3
x
s
i
n
8
x
+
7
s
i
n
6
x
+
18
s
i
n
4
x
+
12
s
i
n
2
x
equal to
2487
233
KEAM
KEAM 2014
Report Error
A
2 sin x
B
sin x
C
sin 2x
D
2 cos x
E
cos x
Solution:
We have,
0
<
x
<
π
s
i
n
7
x
+
6
s
i
n
5
x
+
12
s
i
n
3
x
s
i
n
8
x
+
7
s
i
n
6
x
+
18
s
i
n
4
x
+
12
s
i
n
2
x
s
i
n
7
x
+
6
s
i
n
5
x
+
12
s
i
n
3
x
[
(
s
i
n
8
x
+
s
i
n
6
x
)
+
6
(
s
i
n
6
x
+
s
i
n
4
x
)
+
12
(
s
i
n
4
x
+
s
i
n
2
x
)
]
s
i
n
7
x
+
6
s
i
n
5
x
+
12
s
i
n
3
x
[
2
s
i
n
(
2
8
x
+
6
x
)
c
o
s
(
2
8
x
−
6
x
)
+
6
⋅
2
s
i
n
2
(
6
x
+
4
x
)
c
o
s
2
(
6
x
−
4
x
)
+
12
⋅
2
s
i
n
2
(
4
x
+
2
x
)
c
o
s
2
(
4
x
−
2
x
)
]
s
i
n
7
x
+
6
s
i
n
5
x
+
12
s
i
n
3
x
[
2
s
i
n
7
x
c
o
s
x
+
12
s
i
n
5
x
c
o
s
x
+
24
s
i
n
3
x
c
o
s
x
]
=
s
i
n
7
x
+
6
s
i
n
5
x
+
12
s
i
n
3
x
2
c
o
s
x
[
s
i
n
7
x
+
6
s
i
n
5
x
+
12
s
i
n
3
x
]
0
=
2
cos
x