Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 0<φ <(π /2),x=∑ limitsn=0∞ cos 2nφ ,y=∑ limitsn=0∞ sin 2nφ and z=∑ limitsn=0∞ cos 2nφ sin 2nφ , then:
Q. If
0
<
ϕ
<
2
π
,
x
=
n
=
0
∑
∞
cos
2
n
ϕ
,
y
=
n
=
0
∑
∞
sin
2
n
ϕ
and
z
=
n
=
0
∑
∞
cos
2
n
ϕ
sin
2
n
ϕ
,
then:
1144
244
KEAM
KEAM 2005
Report Error
A
x
yz
=
x
z
+
y
B
x
yz
=
x
y
+
z
C
x
yz
=
x
+
y
+
z
D
x
yz
=
yz
+
x
E
x
yz
=
x
+
yz
Solution:
∵
x
=
n
=
0
∑
∞
cos
2
n
ϕ
=
1
+
cos
2
ϕ
+
cos
4
ϕ
+
....
=
1
−
c
o
s
2
ϕ
1
=
s
i
n
2
ϕ
1
Similarity
=
1
−
s
i
n
2
ϕ
1
=
c
o
s
2
ϕ
1
and
z
=
1
−
s
i
n
2
ϕ
c
o
s
2
ϕ
1
=
1
−
x
1
.
y
1
1
=
x
y
−
1
x
y
⇒
x
yz
−
z
=
x
y
⇒
x
yz
=
x
y
+
z