Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 0 < φ < (π/2), x= displaystyle∑n=0∞ cos 2 n φ, y= displaystyle∑n=0∞ sin 2 n φ and z= displaystyle∑n=0∞ cos 2 n φ sin 2 n φ, then
Q. If
0
<
ϕ
<
2
π
,
x
=
n
=
0
∑
∞
cos
2
n
ϕ
,
y
=
n
=
0
∑
∞
sin
2
n
ϕ
and
z
=
n
=
0
∑
∞
cos
2
n
ϕ
sin
2
n
ϕ
, then
110
179
Sequences and Series
Report Error
A
x
yz
=
x
z
+
y
B
x
yz
=
x
y
+
z
C
x
yz
=
x
+
y
+
z
D
x
yz
=
yz
+
x
Solution:
Since,
x
=
n
=
0
∑
∞
cos
2
n
ϕ
=
1
+
cos
2
ϕ
+
cos
4
ϕ
+
…
=
1
−
c
o
s
2
ϕ
1
=
s
i
n
2
ϕ
1
(
∵
∣
cos
x
∣
<
1
)
Similarly,
y
=
1
−
s
i
n
2
ϕ
1
=
c
o
s
2
ϕ
1
and
z
=
1
−
s
i
n
2
ϕ
c
o
s
2
ϕ
1
=
1
−
x
1
⋅
y
1
1
=
x
y
−
1
x
y
⇒
x
yz
=
x
y
+
z