Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
How many terms of the sequence cot -1 3, cot -1 7, cot -1 13, cot -1 21, ldots ldots ldots ldots ldots .. must be taken to have their sum equal to (1/2) cos -1((24/145)).
Q. How many terms of the sequence
cot
−
1
3
,
cot
−
1
7
,
cot
−
1
13
,
cot
−
1
21
,
……………
.
. must be taken to have their sum equal to
2
1
cos
−
1
(
145
24
)
.
155
128
Inverse Trigonometric Functions
Report Error
Answer:
11
Solution:
T
1
=
tan
−
1
3
1
=
tan
−
1
2
−
tan
−
1
1
;
T
2
=
tan
−
1
7
1
=
tan
−
1
3
−
tan
−
1
2
;
T
3
=
tan
−
1
13
1
=
tan
−
1
4
−
tan
−
1
3
<
b
r
/
>
Clearly
T
n
=
tan
−
1
(
n
+
1
)
−
tan
−
1
(
n
)
Hence
S
n
=
tan
−
1
(
n
+
1
)
−
tan
−
1
1
=
tan
−
1
(
1
+
(
n
+
1
)
⋅
1
n
+
1
−
1
)
=
(
tan
−
1
n
+
2
n
)
=
2
1
cos
−
1
(
145
24
)
⇒
2
(
tan
−
1
n
+
2
n
)
=
cos
−
1
(
145
24
)
(
Using
2
tan
−
1
x
=
cos
−
1
(
1
+
x
2
1
−
x
2
)
∀
x
≥
0
)
⇒
cos
−
1
(
n
2
+
2
n
+
2
2
(
n
+
1
)
)
=
cos
−
1
(
145
24
)
⇒
(
n
2
+
2
n
+
2
2
(
n
+
1
)
)
=
(
145
24
)
⇒
12
(
n
+
1
)
2
−
144
(
n
+
1
)
−
(
n
+
1
)
+
12
=
0
=
((
n
+
1
)
−
12
)
(
12
(
n
+
1
)
−
1
)
=
0
∴
n
+
1
=
12
,
12
1
∴
n
=
11
,
12
−
11
∵
n
∈
N
∴
n
=
12
−
11
Hence,
n
=
11