Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Given y(0)=2000 and (d y/d x)=32000-20 y2, then find the value of displaystyle limx arrow ∞ y(x).
Q. Given
y
(
0
)
=
2000
and
d
x
d
y
=
32000
−
20
y
2
, then find the value of
x
→
∞
lim
y
(
x
)
.
130
158
Differential Equations
Report Error
Answer:
40
Solution:
We have
d
x
d
y
=
20
(
1600
−
y
2
)
⇒
∫
(
40
)
2
−
y
2
d
y
=
20
∫
d
x
⇒
80
1
ln
40
−
y
40
+
y
=
20
x
+
C
′
or
ln
40
−
y
40
+
y
=
1600
x
+
C
⇒
40
−
y
40
+
y
=
1
k
e
1600
x
,
where
k
=
e
C
(let)
⇒
80
2
y
=
k
e
1600
x
+
1
k
e
1600
x
−
1
(using componendo and dividendo)
∴
x
→
∞
lim
y
=
40
x
→
∞
lim
[
k
−
e
−
1600
x
k
−
e
−
1600
x
]
=
40