Q.
Given two vectors are i^−j^ and i^+2j^, the unit vector is coplanar with the two vectors and perpendicular to the first. Find the vector?
1904
213
J & K CETJ & K CET 2014Vector Algebra
Report Error
Solution:
Let given two vectors are a=i−j and b=i+2j
Again let third unit vector is c. ∵ c is coplanar with a, b ∴c=xa+yb =x(i−j)+y(i+2j) ⇒c=(a+y)i+(−x+2y)j ..(i)
Also, c is perpendicular to a ∴ a.c=0 ⇒(i−j).{(x+y)i+(−x+2y)j}=0 ⇒(x+y)−(−x+2y)=0 ⇒x+y+x−2y=0 ⇒2x−y=0⇒y=2x
On putting this value of y in Eq. (i), we get c=(x+2x)i+(−x+4x)j ⇒c=3xi+3xj ..(ii)
But c is a unit vector. So, ∣c∣=1 ⇒(3x)2+(3x)2=1⇒9x2+9x2=1 ⇒x2=181⇒x=321
On putting this value of x in Eq. (ii), we get c=3.321i+3.321j⇒c=21(i+j)