Given that tanθ=m and tan2θ=n
We know from fundamentals that ⇒tan3θ=1−tanθtan2θtanθ+tan2θ
Since , tan3θ=tanθ+tan2θ..... as given) ⇒tanθ+tan2θ=1−tanθtan2θtanθ+tan2θ ⇒(tanθ+tan2θ)(1−tanθtan2θ)−(tanθ+tan2θ)=0 ⇒(tanθ+tan2θ){1−tanθtan2θ−1}=0 ⇒(tanθ+tan2θ)(tanθtan2θ)=0 ⇒(m+n)(mn)=0;⇒(m+n)=0
[Since, m=0n and =0]