We have, f(x)=[x]2+x2
Given, f(x)>25 ∴[x]2+x2>25 ⇒(x−{x})2+x2>25 [∵x=[x]+{x} where 0≤{x}<1] ⇒x2+{x}2+x2−2x{x}>25 ⇒2x2−2x{x}+{x}2>25 ⇒2x(x−{x})+{x}2>25 ⇒2x[x]+{x}2>25 ⇒2x[x]≥24[∵0≤{x}2<1] ⇒x[x]≥12, which is possible for x≥4 or x≤−4 ∴ Value of x is the member of the set {x∣x≤−4 or x≥4}