Q.
Given f(x)={x2e2(x−1), 0≤x≤1.asgn(x+1)cos(2x−2)+bx2,1<x≤2
If f(x) is differentiable at x=1, then the value of ∣a−b∣ is
3312
222
NTA AbhyasNTA Abhyas 2020Continuity and Differentiability
Report Error
Answer: 3
Solution:
f(1−)=1=f(1) and f(1+)=a+b
For continuity at x=1,a+b=1……(i)
In 0<x<1,f′(x)=2xe2(x−1)+2x2e2(x−1) ∴f′(1−)=4
In 1<x<2,f′(x)=−2asin(2x−2)+2bx ∴f′(1+)=2b
For differentiability at x=1,2b=4 . This with (i) gives the values a=−1,b=2
then ∣b−a∣=3