Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Given f (x)=log((1+x/1-x)) and g(x)=(3x+x3/1+3x2), then fog(x) equals
Q. Given
f
(
x
)
=
l
o
g
(
1
−
x
1
+
x
)
and
g
(
x
)
=
1
+
3
x
2
3
x
+
x
3
, then
f
o
g
(
x
)
equals
2114
195
Relations and Functions - Part 2
Report Error
A
−
f
(
x
)
10%
B
3
f
(
x
)
52%
C
[
f
(
x
)
]
3
28%
D
None of these
10%
Solution:
f
[
g
(
x
)
]
=
f
[
1
+
3
x
2
3
x
+
x
3
]
=
l
o
g
{
1
−
1
+
3
x
2
3
x
+
x
3
1
+
1
+
3
x
2
3
x
+
x
3
}
f
(
g
(
x
)
)
=
l
o
g
(
1
−
x
1
+
x
)
3
=
3
l
o
g
(
1
−
x
1
+
x
)
=
3
f
(
x
)