Q.
Given f(x) is a polynomial function of x, satisfying f(x)⋅f(y)=f(x)+f(y)+f(xy)−2 and that f(2)=5. Then f(3) is equal to
373
140
Relations and Functions - Part 2
Report Error
Solution:
Given f(x)⋅f(y)=f(x)+f(y)+f(xy)−2 put y=1/x f(x)⋅f(x1)=f(x)+f(x1)+f(1)−2 put x=1,y=1 f(1)⋅f(1)=2f(1)+f(1)−2 f2(1)−3f(1)+2=0 (f(1)−1)(f(1)−2)=0⇒f(1)=1 or f(1)=2 but f(1)=1⇒f(1)=2( as in this case f(x)=1 for all x)
Hence f(x)⋅f(x1)=f(x)+f(x1)
Let f(x)=xn+1 f(2)=2n+1=5⇒n=2 ∴f(x)=x2+1⇒f(3)=10