Q.
Given α and β are the roots of the quadratic equation x2−4x+k=0(k=0). If αβ,αβ2+α2β, α3+β3 are in geometric progression then the value of ' k′ equals
Given αβ;αβ(α+β);α3+β3 are in G.P. α+β=4;αβ=k;αβ2+α2β=αβ(α+β)=4k α3+β3=(α+β)3−3αβ(α+β) =64−3k(4)=4(16−3k) ∴k;4k;4(16−3k) are in G.P. 16k2=4k(16−3k) 4k(4k−16+3k)=0 k=0;k=716