Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Given a real-valued function f such that f(x)= begincases( tan 2 x /(x2-[x]2)) text for x>0 1 text for x=0 √ x cot x text for x<0 endcases where [x] is the integral part and x is the fractional part of x, then
Q. Given a real-valued function f such that
f
(
x
)
=
⎩
⎨
⎧
(
x
2
−
[
x
]
2
)
t
a
n
2
{
x
}
1
{
x
}
cot
{
x
}
for
x
>
0
for
x
=
0
for
x
<
0
where
[
x
]
is the integral part and
{
x
}
is the fractional part of
x
, then
1872
229
Limits and Derivatives
Report Error
A
x
→
0
+
lim
f
(
x
)
=
1
B
x
→
0
−
lim
f
(
x
)
=
cot
1
C
cot
−
1
(
x
→
0
−
lim
f
(
x
)
)
2
=
1
D
tan
−
1
(
x
→
0
+
lim
f
(
x
)
)
=
4
π
Solution:
We have,
x
→
0
+
lim
f
(
x
)
=
x
→
0
+
lim
(
x
2
−
[
x
]
2
)
tan
2
{
x
}
=
x
→
0
+
lim
x
2
tan
2
x
=
1
...
(
i
)
(
∵
x
→
0
+
;
[
x
]
=
0
⇒
{
x
}
−
x
)
Also,
k
→
0
−
lim
f
(
x
)
=
x
→
0
−
lim
{
x
}
cot
{
x
}
=
cot
1
(
∵
x
→
0
−
;
[
x
]
=
−
1
⇒
{
x
}
=
x
+
1
⇒
{
x
}
→
1
)
Also,
cot
−
1
(
x
→
0
−
lim
f
(
x
)
)
2
=
cot
−
1
(
cot
1
)
=
1