Q.
Given a real-valued function f such that
$f(x)=\begin{cases}\frac{\tan ^{2}\{x\}}{\left(x^{2}-[x]^{2}\right)} & \text { for } x>0 \\ 1 & \text { for } x=0 \\ \sqrt{\{x\} \cot \{x\}} & \text { for } x<0\end{cases}$
where $[x]$ is the integral part and $\{x\}$ is the fractional part of $x$, then
Limits and Derivatives
Solution: