Q.
Given a,b,c are three distinct real numbers satisfying the inequality a−2b+4c>0 and the equation ax2+bx+c=0 has no real roots. Then the possible value of a+3b+9c4a+2b+c is/are
442
102
Complex Numbers and Quadratic Equations
Report Error
Solution:
Let f(x)=a2+bx+c
Since equation ax2+bx+c=0 has no real roots, so f(x)>0∀x∈R or f(x)<0∀x∈R
But given a−2b+4c>0⇒f(2−1)>0⇒f(x)>0∀x∈R. ∴f(2)=4a+2b+c>0 and f(31)=9a+3b+9c>0
So, 9f(31)f(2)=9c+3b+a4a+2b+c>0
Hence 9c+3b+a4a+2b+c>0.