Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Given 0 ≤ x ≤ (1/2) then the value of tan [ sin-1 (x/√ 2)+ (√ 1-x2 /√ 2) - sin-1x] is
Q. Given
0
≤
x
≤
2
1
then the value of
tan
[
sin
−
1
{
2
x
+
2
1
−
x
2
}
−
sin
−
1
x
]
is
5262
192
KCET
KCET 2014
Inverse Trigonometric Functions
Report Error
A
3
15%
B
3
1
30%
C
1
44%
D
−
1
12%
Solution:
Given, for
0
≤
x
≤
2
1
tan
[
sin
−
1
{
2
x
+
2
1
−
x
2
}
−
sin
−
1
x
]
=
tan
[
sin
−
1
{
2
x
+
1
−
x
2
}
−
sin
−
1
x
]
Put
sin
−
1
x
=
θ
⇒
x
=
sin
θ
=
tan
[
[
sin
−
1
{
2
s
i
n
θ
+
1
−
s
i
n
2
θ
}
−
θ
]
=
tan
[
sin
−
1
{
2
1
sin
θ
+
2
1
cos
θ
}
−
θ
]
=
tan
[
sin
−
1
{
sin
(
θ
+
4
π
)
}
−
θ
]
=
tan
[
θ
+
4
π
−
θ
]
=
tan
4
π
=
1