Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
General solution of the differential equation ( dy / dx )+ yg'( x )= g ( x ) ⋅ g '( x ), where g ( x ) is a function of x is
Q. General solution of the differential equation
d
x
d
y
+
y
g
′
(
x
)
=
g
(
x
)
⋅
g
′
(
x
)
, where
g
(
x
)
is a function of
x
is
1944
217
Differential Equations
Report Error
A
g
(
x
)
−
lo
g
[
1
−
y
−
g
(
x
)]
=
C
B
g
(
x
)
−
lo
g
[
1
+
y
−
g
(
x
)]
=
C
C
g
(
x
)
+
[
1
+
y
−
lo
g
g
(
x
)]
=
C
D
g
(
x
)
+
lo
g
[
1
+
y
−
g
(
x
)]
=
C
Solution:
We have,
d
x
d
y
=
[
g
(
x
)
−
y
]
g
′
(
x
)
Put
g
(
x
)
−
y
=
V
⇒
g
′
(
x
)
−
d
x
d
y
=
d
x
d
V
Hence,
g
′
(
x
)
−
d
x
d
V
=
V
⋅
g
′
(
x
)
⇒
d
x
d
V
=
(
1
−
V
)
⋅
g
′
(
x
)
⇒
1
−
V
d
V
=
g
′
(
x
)
d
x
⇒
∫
1
−
V
d
V
=
∫
g
′
(
x
)
d
x
⇒
−
lo
g
(
1
−
V
)
=
g
(
x
)
−
C
⇒
g
(
x
)
+
lo
g
(
1
−
V
)
=
C
∴
g
(
x
)
+
lo
g
[
1
+
y
−
g
(
x
)]
=
C