1+2cosecx=2−sec2(2x) ⇒1+sinx2=1+cosx−1 ⇒(2+sinx)(1+cosx)=−sinx ⇒2+2cosx+sinx+sinxcosx=−sinx ⇒2(sinx+cosx)+sinxcosx+2=0
Put sinx+cosx=t ⇒1+2sinxcosx=t2 ∴2t+2t2−1+2=0⇒t2+4t+3=0 ⇒t=−1,−3⇒sinx+cosx=−1 ⇒cos(x−4π)=2−1=cos43π ⇒x−4π=2nπ±43π ⇒x=2nπ+π,2nπ−2π ⇒x=2nπ+π at which cosecx is not defined ∴x=2nπ−2π.