Q.
For x,y,z∈(0,2π), let x,y,z be first three consecutive terms of an arithmetic progression such that cosx+cosy+cosz=1 and sinx+siny+sinz=21, then which of the following is/ are correct?
We have y{=x−d,y,y{=z+d in A.P
Now, ∑cosx=1⇒cos(y−d)+cosy+cos(y+d)=1⇒cosy(2cosd+1)=1 ....(1)
Also, ∑sinx=21⇒sin(y−d)+siny+sin(y+d)=21⇒siny(2cosd+1)=21 ....(2) ∴ Equation (2) Equation (1) ⇒coty=2
Now, putting cosy=32 in (1), we get 2cosd+1=32⇒cosd=223−2=cos(y−x)=cos(x−y)
Also, tan2y=1−tan2y2tany=1−212×21=212=22
Clearly, sin(x−y)+sin(z−y)=sin(−d)+sind=0.