Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For x, y, z ∈[0,2 π]. The number of ordered triplets (x, y, z) satisfying 16( sin 4 x)+2( sin 4 y)+ 4( sin 4 z)-16( sin x)( sin y)( sin z)+2=0.
Q. For
x
,
y
,
z
∈
[
0
,
2
π
]
. The number of ordered triplets
(
x
,
y
,
z
)
satisfying
16
(
sin
4
x
)
+
2
(
sin
4
y
)
+
4
(
sin
4
z
)
−
16
(
sin
x
)
(
sin
y
)
(
sin
z
)
+
2
=
0
.
295
149
JEE Advanced
JEE Advanced 2019
Report Error
A
20
0%
B
18
0%
C
16
100%
D
14
0%
Solution:
Given equation simplifies to
(
4
sin
2
x
−
2
sin
2
z
)
2
+
4
(
2
sin
x
⋅
sin
z
−
sin
y
)
2
+
<
b
r
/
>
2
(
sin
2
y
−
1
)
2
=
0
∴
sin
2
y
=
1
,
2
sin
x
⋅
sin
z
=
sin
y
,
2
sin
2
x
=
sin
2
z