Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
For x ∈ R, the number of real roots of the equation 3 x2-4|x2-1|+x-1=0 is .
Q. For
x
∈
R
, the number of real roots of the equation
3
x
2
−
4
∣
∣
x
2
−
1
∣
∣
+
x
−
1
=
0
is ______.
2623
165
JEE Advanced
JEE Advanced 2021
Report Error
Answer:
4
Solution:
3
x
2
−
4
∣
∣
x
2
−
1
∣
∣
+
x
−
1
=
0
Case-I:
∣
x
∣
≥
1
3
x
2
−
4
x
2
+
4
+
x
−
1
=
0
−
x
2
+
x
+
3
=
0
x
2
−
x
−
3
=
0
x
=
2
1
±
1
+
12
=
2
1
±
13
=
2
1
+
13
,
2
1
−
13
∣
x
∣
<
1
3
x
2
+
4
x
2
−
4
+
x
−
1
=
0
7
x
2
+
x
−
5
=
0
x
=
14
−
1
±
1
+
20
×
7
=
14
−
1
±
141
So, number of real roots
=
4