Q.
For x∈R, let the function y(x) be the solution of the differential equation dxdy+12y=cos(12πx),y(0)=0.
Then, which of the following statements is/are TRUE?
dxdy+12y=cos(12πx)
Linear D.E. I.F. =e∫12.dx=e12x
Solution of DE y⋅e12x=∫e12x⋅cos(12πx)dx y⋅e12x=(12)2+(12π)2e12x(12cos12πx+12πsin12πx)+C ⇒y=(12)4+π2(12)((12)2cos(12πx)+πsin(12πx))+e12xC
Given y(0)=0 ⇒0=124+π212(122+0)+C⇒C=124+π2−123 ∴y=124+π212[(12)2cos(12πx)+πsin(12πx)−122⋅e−12x]
Now dxdy=124+π212[min. value −12πsin(12πx)+12π2cos(12πx)+123e−12x] (−144π2+144π4=−12π1+124π2) ⇒dxdy>0∀x≤0 & may be negative/positive for x>0
So, f(x) is neither increasing nor decreasing
For some β∈R,y=β intersects y=f(x) at infinitely many points
So option C is correct